Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
SUMMARY Physics-based simulations provide a path to overcome the lack of observational data hampering a holistic understanding of earthquake faulting and crustal deformation across the vastly varying space–time scales governing the seismic cycle. However, simulations of sequences of earthquakes and aseismic slip (SEAS) including the complex geometries and heterogeneities of the subsurface are challenging. We present a symmetric interior penalty discontinuous Galerkin (SIPG) method to perform SEAS simulations accounting for the aforementioned challenges. Due to the discontinuous nature of the approximation, the spatial discretization natively provides a means to impose boundary and interface conditions. The method accommodates 2-D and 3-D domains, is of arbitrary order, handles subelement variations in material properties and supports isoparametric elements, that is, high-order representations of the exterior boundaries, interior material interfaces and embedded faults. We provide an open-source reference implementation, Tandem, that utilizes highly efficient kernels for evaluating the SIPG linear and bilinear forms, is inherently parallel and well suited to perform high-resolution simulations on large-scale distributed memory architectures. Additional flexibility and efficiency is provided by optionally defining the displacement evaluation via a discrete Green’s function approach, exploiting advantages of both the boundary integral and volumetric methods. The optional discrete Green’s functions are evaluated once in a pre-computation stage using algorithmically optimal and scalable sparse parallel solvers and pre-conditioners. We illustrate the characteristics of the SIPG formulation via an extensive suite of verification problems (analytic, manufactured and code comparison) for elastostatic and quasi-dynamic problems. Our verification suite demonstrates that high-order convergence of the discrete solution can be achieved in space and time and highlights the benefits of using a high-order representation of the displacement, material properties and geometries. We apply Tandem to realistic demonstration models consisting of a 2-D SEAS multifault scenario on a shallowly dipping normal fault with four curved splay faults, and a 3-D intersecting multifault scenario of elastostatic instantaneous displacement of the 2019 Ridgecrest, CA, earthquake sequence. We exploit the curvilinear geometry representation in both application examples and elucidate the importance of accurate stress (or displacement gradient) representation on-fault. This study entails several methodological novelties. We derive a sharp bound on the smallest value of the SIPG penalty ensuring stability for isotropic, elastic materials; define a new flux to incorporate embedded faults in a standard SIPG scheme; employ a hybrid multilevel pre-conditioner for the discrete elasticity problem; and demonstrate that curvilinear elements are specifically beneficial for volumetric SEAS simulations. We show that our method can be applied for solving interesting geophysical problems using massively parallel computing. Finally, this is the first time a discontinuous Galerkin method is published for the numerical simulations of SEAS, opening new avenues to pursue extreme scale 3-D SEAS simulations in the future.more » « less
-
ABSTRACT Numerical modeling of earthquake dynamics and derived insight for seismic hazard relies on credible, reproducible model results. The sequences of earthquakes and aseismic slip (SEAS) initiative has set out to facilitate community code comparisons, and verify and advance the next generation of physics-based earthquake models that reproduce all phases of the seismic cycle. With the goal of advancing SEAS models to robustly incorporate physical and geometrical complexities, here we present code comparison results from two new benchmark problems: BP1-FD considers full elastodynamic effects, and BP3-QD considers dipping fault geometries. Seven and eight modeling groups participated in BP1-FD and BP3-QD, respectively, allowing us to explore these physical ingredients across multiple codes and better understand associated numerical considerations. With new comparison metrics, we find that numerical resolution and computational domain size are critical parameters to obtain matching results. Codes for BP1-FD implement different criteria for switching between quasi-static and dynamic solvers, which require tuning to obtain matching results. In BP3-QD, proper remote boundary conditions consistent with specified rigid body translation are required to obtain matching surface displacements. With these numerical and mathematical issues resolved, we obtain excellent quantitative agreements among codes in earthquake interevent times, event moments, and coseismic slip, with reasonable agreements made in peak slip rates and rupture arrival time. We find that including full inertial effects generates events with larger slip rates and rupture speeds compared to the quasi-dynamic counterpart. For BP3-QD, both dip angle and sense of motion (thrust versus normal faulting) alter ground motion on the hanging and foot walls, and influence event patterns, with some sequences exhibiting similar-size characteristic earthquakes, and others exhibiting different-size events. These findings underscore the importance of considering full elastodynamics and nonvertical dip angles in SEAS models, as both influence short- and long-term earthquake behavior and are relevant to seismic hazard.more » « less
An official website of the United States government
